Hall Ticket Number:														

Code No.: 31122

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CSE) III Year I-Semester Main & Backlog Examinations, December-2017

Operating Systems

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

$Part-A (10 \times 2 = 20 Marks)$

- 1. What is the difference between a program and a process?
- 2. Draw a neat diagram to show the implementation of a system call.
- 3. If the size of physical memory is 4 GB and the size of virtual memory is 2 GB, how many page table entries will be there per process assuming a page size of 4 KB?
- 4. Write about the fields in File Control Block (FCB).
- 5. What is the necessary condition for a critical section problem to arise?
- 6. Is it possible for a deadlock to arise when resource preemption is allowed? Justify your answer.
- 7. Compare RAID level 0 with RAID level 1.
- 8. What is a device controller and device driver? How these two components are related to each other while performing I/O operation?
- 9. What are the goals of Operating system in ensuring protection?
- 10. List the design principles of Linux.

Part-B $(5 \times 10 = 50 \text{ Marks})$ (All bits carry equal marks)

- 11. a) Explain two techniques for achieving load balancing in multiprocessor scheduling mechanisms.
 - b) Compute turnaround time and waiting time for the following process given by using FCFS, SJF, SRTF and Round Robin CPU Scheduling algorithms, where time slice = 2msec

Process	Burst time	Priority	Arrival time
P1	2	2	0
P2	1	1	1
P3	8	4	2
P4	4	2	1
P5	5	3	2

- 12. a) What is the purpose of multi-level page table? Explain the utility using an example.
 - b) A certain computer provides its users with a virtual memory space of 2³² bytes. The computer has 2²²bytes of physical memory. The virtual memory is implemented by using paging. The page size is 4096 bytes. A user process generates the virtual address 11123456. Explain how the system establishes the corresponding physical location.
- 13. a) Describe the solution for Readers-Writers problem with Semaphores
 - b) Consider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock free.

- 14. a) Compare NAS and SAN to attach disk storage to the system with the help of a neat diagram.
 - b) Describe the functions of Kernel I/O subsystem in detail.
- 15. a) Discuss the strengths and weaknesses of implementing an access matrix using capabilities that are associated with domains and access list associated with objects.
 - b) Draw a neat diagram to show the implementation of Services in Android Operating system.
- 16. a) Explain the advantages of Multithreading. Also explain with neat sketches to map user threads to kernel threads.
 - b) What is the use of TLB (Translation Look Aside buffer) in efficient implementation of Paging? Compute effective memory-access time if 80% is the TLB hit ratio and 100 nanoseconds require to access main memory.
- 17. Answer any two of the following:
 - a) Explain what is a *test_and_set* instruction. Demonstrate how mutual exclusion can be achieved using this instruction.
 - b) Describe the major issues in Disk management.
 - c) Explain major components of Windows Operating system with a neat diagram.

രുവുത്തത